Barham Primary School

Mathematics

Calculation Policy

Calculation Policy - EYFS (Nursery \& Reception)

Addition	Subtraction	Multiplication	Division
Children are encouraged to gain a sense of the number system through the use of counting concrete objects. They combine objects in practical ways and count all. They understand addition as counting on and will count on in ones (and twos for using objects, cubes, bead string and number line. They use concrete and pictorial representation to record their calculations. They begin to use + and = They are encouraged to develop a mental picture of the number system in their heads to use for calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	Children are encouraged to gain a sense of the number system through the use of counting concrete objects. They subtraction counting out. understand as They begin to count back in ones (and twos for HA) using objects, cubes, bead string and number line. They use concrete and pictorial representation to record their calculations. They begin to use - and = They are encouraged to develop a mental picture of the number system in their heads to use for calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	Children use concrete objects to make and count equal groups of objects. They will count on in twos using a bead string and number line. They understand doubling as repeated addition. $2+2=4$ They use concrete and pictorial representation to record their calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	Children use concrete objects to count and share equally into 2 groups. 6 cakes shared between 2 people each person gets 3 cakes. $6 \div 2=3$ They count a set of objects and halve them by making two equal groups. They understand sharing and halving as dividing by 2 . They will begin to use objects to make groups of 2 from a given amount. They use concrete and pictorial representation to record their calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.

This policy outlines both the mental and written methods that should be taught from EYFS to Year 6.
The policy has been written according to the Early Years Framework National Curriculum 2014 and the written calculations for all four operations are as outlined on the appendices of the Programme of Study.

The document builds on the interconnectedness of mathematics and outlines the progression for addition, subtraction, multiplication and division. It is our intention that addition and subtraction should be taught at the same time to ensure children are able to see the clear links between the operations and the inverse nature of them along with multiplication and division.

Children should secure mental strategies. They are taught the strategy of counting forwards and backwards in ones and tens first and then 'Special Strategies' are introduced. Children are taught to look carefully at the calculation and decide, which strategy they should use. Children should explain and reason as to why they have chosen a strategy and whether it is the most efficient.

The formal written methods should be introduced with caution. Calculations that require a written method should be presented to the children and models and images, such as dienes apparatus, place value counters, etc. should be used to ensure children have a conceptual understanding of the written method and that it is not a process that the children use for every type of calculation regardless of whether it can be completed mentally or mentally with jotting i.e. the number line.

The policy outlines the mental strategies that children should be encouraged to use:
A mental strategy that they can always rely on E.g. counting in tens and ones, forwards and backwards E.g. $56-25$ (count back in 10s $56,46,36$ and back in ones $36,35,34,33,32,31)$
A special strategy they can select from a small range of strategies if they can see something special about the numbers they are being asked to calculate with E.g. 46 -24 (I can use near doubles to support my calculation E.g. 46-23-1)

The policy outlines the written methods as suggested on the appendices of the Curriculum 2014 and suggests that children:

- Look at a calculation and decide whether it can be done mentally, mentally with a jotting or whether it needs a written method.
- Should always be shown written methods with place value apparatus to ensure children are clear about the value of the numbers that they are calculating with and the numbers do not just become digits.
- Estimate, calculate and check to ensure that the answer they generate has some meaning.

For the purpose of developing understanding there may be occasions when examples that can be completed mentally may be shown as a written method purely to develop understanding of the method. This needs to be made very clear to children and when they are practising the methods, appropriate calculations should be used.

There is also a section on calculating with fractions; the expectations from $\mathrm{Y} 1-\mathrm{Y} 6$ and examples with the models and images that should be used in order to ensure children develop a conceptual understanding when calculating with fractions.

Mental Maths Strategies Progression

Counting forwards and backwards

Children first meet counting by beginning at one and counting on in ones. Their sense of number is extended by beginning at different numbers and counting forwards and backwards in steps, not only of ones, but also of twos, fives, tens, hundreds, tenths and so on. The image of a number line helps them to appreciate the idea of counting forwards and backwards. They will also learn that, when they add two numbers together, it is generally easier to count on from the larger number rather than the smaller. You will need to review children's 'counting on' strategies, then show them and encourage them to adopt more efficient methods.

Reordering

Sometimes a calculation can be more easily worked out by changing the order of the numbers. The way in which children rearrange numbers in a particular calculation will depend on which number facts they can recall or derive quickly. It is important for children to know when numbers can be reordered: e.g. $2+5+8=8+2+5$ or $15+$ $8-5=15-5+8$ or $23-9-3=23-3-9$ and when they can't be reordered: e.g. $8-5!5-8$ The strategy of changing the order of numbers applies mainly when the question is written down. It is more difficult to reorder numbers if the question is presented orally

Partitioning: counting on or back It is important for children to know that numbers can be partitioned into, for example, hundreds, tens and ones, so that $326=300+20$ +6 . In this way, numbers are seen as wholes, rather than as a collection of single digits in columns. This way of partitioning numbers can be a useful strategy for adding and subtracting pairs of numbers. Both numbers can be partitioned, although it is often helpful to keep the first number as it is and to partition just the second number.

Partitioning: bridging through multiples of 10

An important aspect of having an appreciation of number is to know how close a number is to the next or the previous multiple of 10: to recognise, for example, that 47 is 3 away from 50, or that 47 is 7 away from 40 . In mental addition or subtraction, it is often useful to count on or back in two steps, bridging a multiple of 10 . The empty number line, with multiples of 10 as 'landmarks', is helpful, since children can visualise jumping to them. For example, $6+7$ is worked out in two jumps, first to 10 , then to 13

Partitioning: compensating

This strategy is useful for adding and subtracting numbers that are close to a multiple of 10 , such as numbers that end in 1 or 2 , or 8 or 9 . The number to be added or subtracted is rounded to a multiple of 10 plus or minus a small number. For example, adding 9 is carried out by adding 10, then subtracting 1 ; subtracting 18 is carried out by subtracting 20 , then adding 2 . A similar strategy works for adding or subtracting decimals that are close to whole numbers. For example: $1.4+2.9=1.4+3-0.1$ or $2.45-1.9=2.45-2+0.1$.

Partitioning: using 'near' doubles

If children have instant recall of doubles, they can use this information when adding two numbers that are very close to each other. So, knowing that $6+6=12$, they can be encouraged to use this to help them find $7+6$, rather than use a counting on strategy or bridging through 10 .

Partitioning: bridging through 60 to calculate a time interval

Time is a universal non-metric measure. A digital clock displaying 9.59 will, in two minutes time, read 10.01 not 9.61 . When children use minutes and hours to calculate time intervals, they have to bridge through 60 . So to find the time 20 minutes after 8.50 am , for example, children might say 8.50 am plus 10 minutes takes us to 9.00 am , then add another 10 minutes

Key representations to support conceptual understanding of addition and subtraction.

$15+5=20$

DEVELOPING UNDERSTANDING OF ADDITION AND SUBTRACTION

Year 1	
Objectives	Recall of Facts
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs	
represent and use we know $4+5=9$	
number bonds and related	We also know:
subtraction facts within 20	$5-5=9$
	$9-4=5$
	$14+5=19$ add and subtract one-digit and two-digit numbers to 20, including zero

Children need to be secure with Using and Applying these skills in unfamiliar contexts before moving into the Year 2 objectives.

Mental Jottings with representations

Immerse children in practical opportunities to develop understanding of addition and subtraction. Link practical representations on a number track on a beadstring to recording on a number line. By the end of Year 1 children should be able to recall and use facts within and to 20.

Year 4		
Objectives:	Mental Recall/Jottings:	Written Methods:
Continue to secure and extend mental methods from previous year groups. To select whether a calculation can be done mentally, with a jotting or using a formal written method. Add and subtract numbers with up to 4 digits using formal written methods of column addition and subtraction where appropriate.	Develop confidence at calculating mentally with larger numbers. Using the full range of strategies: Counting in $1 \mathrm{~s} / \mathbf{1 0 s}$ Bridging through multiples of 10 Partitioning - Rounding and Adjusting Reordering - Near Doubles Bridging through 60 when calculating with time. Can I do it mentally? Should I use a jotting? Should I use a written method?	Add and subtract numbers up to four digits. Using number to ensure children understand the process before quickly moving into numbers that do require a written method.

Year 5

Objectives:
Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)

Add and subtract numbers mentally with
increasingly large
numbers
Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

12 462-2300

Use knowledge of place value to calculate mentally with increasingly larger numbers.

Employ a range of special strategies to develop confidence in calculating mentally. E.g.

$2364+1999=$

$2364+2000=4364$
$4364-1=4363$
$13484+2400=$
$13000+2000=15000$
$484+400=884$
$15000+884=15884$
$4=2001$ - 1997

1997
2000
2001
13486-5000
$13486-3000=10486$
$10486-2000=8486$

$$
800+640=1440 \quad 900-500=400 \quad 900-500=400
$$

$$
\begin{array}{l|l|l}
789+642 \text { becomes } & 874-523 \text { becomes } & 932-457 \text { becomes }
\end{array}
$$

Answer: 1431

874
-523
\qquad

Answer: 351

932-457 becomes
$8 \quad 12{ }^{1}$
-457
\qquad

Answer: 475

$9^{1} 3^{1} 2$
$-5^{4} 7$
$4 \mathbf{5}^{4} 5$

Check:

Is your estimate close to the answer you have calculated?
$25.356+346.28$ becomes:
Estimate:
$25+350=375$
25.356
$+346.28$
$\frac{371.636}{11}$
9.076-3.142 becomes:

Estimate:
$9-3=6$
89. 1076
3. 142
5. 934

Key representations to support conceptual understanding of multiplication and division

Year 1

Year 2		
Objective	Examples	Models and Images
count in steps of 2, 3, and 5 from 0, and in tens from any number, forward or backward (copied from Number and Place Value) recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Written calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs	$\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 2=5 \\ & 10 \div 5=2 \end{aligned}$ Use knowledge of doubling: $\begin{aligned} & 2 \times 10=20 \\ & 10 \times 2=20 \\ & 20 \div 2=10 \\ & 20 \div 10=2 \end{aligned}$	

Year 4					
Objective	Mental Methods	Written Methods with represen	ntations		
count in multiples of 6, 7, 9,25 and 1000 (copied from Number and Place Value) recall multiplication and division facts for multiplication tables up to 12×12 use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers. recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers) multiply two-digit and three-digit numbers by a one-digit number using formal written layout	If the children know multiplication and division facts for: 2/5/10/3/4/8/ they now need to learn. $\begin{aligned} & 6 \times 6 \quad 7 \times 7 \quad 9 \times 911 \times 11 \\ & 7 \times 69 \times 711 \times 912 \times 11 \\ & 9 \times 611 \times 712 \times 912 \times 12 \\ & 11 \times 612 \times 7 \\ & 12 \times 6 \end{aligned}$ Explore what happens when we divide by 1 and 0. To solve 24×3 Use knowledge of factor pairs. $\left\lvert\, \begin{aligned} & 8 \times 3 \times 3 \\ & 6 \times 4 \times 3 \end{aligned}\right.$ In measuring and scaling contexts, (for example, four times as high, eight times as long etc.) and correspondence problems in which m objects are connected to n objects (for example, 3 hats and 4 coats, how many different outfits?; 12 sweets shared equally between 4 children; 4 cakes shared equally between 8 children).	These are the methods from the appendix of the National Curriculum. Schools should agree the methods that they are going to use. , Short mutiplication Answer: 144 Long multiplication Short division $432 \div 5$ becomes स 6 $5 \longdiv { s ^ { x } z }$ Answer: 86 remainder 2 Long duision $432 \div 15$ becomes			

Year 5						
Objective	Mental Methods					
count forwards or backwards in steps of powers of 10 for any given number up to 1000000 multiply and divide numbers mentally drawing upon known facts multiply and divide whole numbers and those involving decimals by 10,100 and 1000 identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. know and use the vocabulary of prime numbers, prime factors and composite (non prime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)	Multiplying and dividing whole numbers and decimals by 10, 100 and 1000.					

Year 5 Continued.

Objective	Written Methods		
multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	$2307 \times 8=$ Estimate: $2000 \times 8=16000$ Calculate: (Short multiplication) 2307 $1431 \times 23=$ Estimate: $1431 \times 20=28620$ Calculate: (Long multiplication) 1431 $\begin{gathered} \mathrm{X} \frac{23}{4293(1431 \times 3)} \\ \underline{2} \underline{8620}(1431 \times 20) \\ \underline{3} \underline{2913} \end{gathered}$ 11 Examples with decimals: $4.65 \times 9=$	$432 \div 5=$ Estimate: $400 \div 5=80$ Calculate (short division) $432 \div 5$ becomes Answer: 86 remainder 2 $450 \div 15=$ Estimate: $450 \div 15=30$ $432 \div 15$ becomes Calculate: (Long division) Examples with decimals: $37.2 \div 8=$	Ensure children are able to express remainders either as remainder, fraction or decimal. For example remainder 12 or $12 / 15(4 / 5)$ or 0.8)

Year 6	Mental Methods
Objective	perform mental calculations, including with mixed operations and large numbers
They undertake mental calculations with increasingly large numbers and more complex calculations. identify common factors, Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency. Pumpon multiples and number of significant figures. prime numbers	Pupils explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$. Use their knowledge of the order of operations to carry out calculations involving the four operations
Common factors can be related to finding equivalent fractions. Calculate $900 \div(45 \times 4)$.	

Year 6 Continued			
Objective	Written Methods		
multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication divide numbers up to 4digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	Short division $98 \div 7$ becomes $\begin{gathered} 1 \quad 4 \\ 7 \longdiv { 9 \quad 8 } \end{gathered}$ Answer: 14 Long division $432 \div 15$ becomes 1 $\begin{array}{llll} & 2 & 8 & \mathrm{r} 12 \\ & \begin{array}{lll} 4 & 3 & 2 \\ & \\ 3 & 0 & 0 \\ \hline 1 & 3 & 2 \\ 1 & 2 & 0 \\ 1 & 2 & \\ \hline & 1 & 2 \end{array} \end{array}$	$432 \div 5$ becomes $\begin{array}{r} 8 \underbrace{83^{3} 2} \text { r2 } \end{array}$ Answer: 86 remainder 2 $432 \div 15$ becomes 1 $\frac{12}{15}=\frac{4}{5}$	$496 \div 11$ becomes Answer: $45 \frac{1}{11}$ $432 \div 15$ becomes

DEVELOPING UNDERSTANDING OF FRACTIONS/DECIMALS AND PERCENTAGES			
Year	Objectives	Examples	Models and Images
Year 1	- Recognise, find and name a half as one of two equal parts of an object, shape or quantity - Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	Children use their knowledge of fractions of shape to find fractions of quantities. Children should be give practical apparatus to find halves and quarters of quantities within 20. Record work pictorially.	\square
Year 2	- Recognise, find, name and write fractions -, -, - and - of a length, shape, set of objects or quantity - Write simple fractions for example, _ of $6=3$ and recognise the equivalence of and ..	Children use their knowledge of unit and non-unit fractions of shapes to find fractions of quantities. They relate this to find fractions of a length e.g. $2 / 4$ of $1 \mathrm{~m}=$ Children need to relate finding a quarter to halving and halving again. Pupils should count in fractions up to 10 , starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the number line (Non Statutory Guidance)	If I can see $1 / 4$ how many quarters can you see? If I can see $2 / 3$ how many thirds can you see?

- recognise and write decimal equivalents of any number of tenths or hundredths
- recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$
- find the effect of dividing a oneor two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths
- round decimals with one decimal place to the nearest whole number
- compare numbers with the same number of decimal places up to two decimal places
- Solve simple measure and money problems involving fractions and decimals to two decimal places

Children can record on a number line equivalents between $1 / 10$ and 0.1 Count on and back in tenths as decimals and relate to counting on/back in 10ths (fractions).
$25 \div 10=2.5$
2 ones and 5 tenths
$25 \div 100=0.25$
0 ones, 2 tenths and 5
hundredths
or 25
hundredths

Year 6	- Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. - Multiply simple pairs of proper fractions, writing the answer in its simplest form - Divide proper fractions by whole numbers		Subtract Fractions $\begin{gathered} \frac{1}{5}+\frac{1}{3}=\frac{1 \times 3}{5 \times 3}+\frac{1 \times 5}{3 \times 5} \\ =\frac{3}{15}+\frac{5}{15}=\frac{8}{15} \end{gathered}$ Subtract fractions $\frac{5}{6}-\frac{1}{4}=\frac{10}{12}-\frac{3}{12}=\frac{10-3}{12}=\frac{7}{12}$ Adding Fractions 1. Multiply the numerator top x top 2. Multiply the denominator $\frac{1}{2} \times \frac{1}{3}=\frac{1}{6} \quad \frac{2}{3} \times \frac{3}{4}=\frac{6}{12}=\frac{1}{2}$ 3. Then, find simplest form or convert to a mixed number. $\begin{aligned} & \frac{1}{4} \times \frac{2}{5}=\frac{2}{20}=\frac{1}{10} \quad \frac{1}{3} \times \frac{2}{3}=\frac{2}{9} \\ & \frac{3}{4} \times \frac{2}{5}=\frac{6}{20}=\frac{3}{10} \quad \frac{5}{6} \times \frac{1}{3}=\frac{5}{18} \\ & \frac{3}{5} \times \frac{2}{3}=\frac{6}{15}=\frac{62}{5} \quad \frac{3}{4} \times \frac{1}{5}=\frac{3}{20} \end{aligned}$ $\div \quad$ Dividing Fractions $\div \div$

